欢迎来到阶梯文库! | 帮助中心 阶梯文库,助您进步!
阶梯文库
全部分类
  • 行业报告资料库 >
    行业报告资料库
    可研报告 环评报告 节能报告 项目建议 论证报告 其他报告 炭行业报告 钢铁行业报告 农业报告 IT行业报告 文学报告 电力报告 军事报告 半导体行业报告 外语报告
  • 专业资料 >
    专业资料
    人文社科 经管营销 工程科技 IT/计算机 自然科学 医药卫生 农林牧渔
  • 教育专区 >
    教育专区
    幼儿教育 小学资料 中学资料 高中资料 大学资料 成人自考 职业教育 作文写作 字典词语 英语学习
  • 管理文献 >
    管理文献
    事务文书 其他资料 管理手册 管理方法 管理工具 管理制度
  • 应用文书 >
    应用文书
    毕业论文 工作报告 工作计划 PPT文档 工作总结 党团工作 表格/模板 合同协议
  • 生活休闲 >
    生活休闲
    服装配饰 星座运势 摄影摄像 保健养生 美食烹饪 家居装修 宗教风水 社会民生 美容塑身 手工制作 娱乐时尚 沟通交流 网络生活 科普知识 时政新闻 音乐歌曲 户外运动 婚嫁育儿 图书阅读 两性情感 游戏攻略 体育武术 期刊/杂志 宠物 旅游出行
  • 资格/认证考试 >
    资格/认证考试
    建造师考试 注册会计师 公务员考试 专升本考试 成考 自考 教师资格考试 司法考试 微软认证 思科认证 全国翻译资格认证 医师/药师资格考试 会计职称考试 报关员资格考试 人力资源管理师 安全工程师考试 出国培训 资产评估师考试 技工类职业技能考试 银行从业资格 计算机等级考试 营养师认证 物流师考试 证券从业资格考试 注册税务师 理财规划师 建筑师考试 质量管理体系认证
  • 标准规范 >
    标准规范
    机械行业标准(JB) 国家标准(GB) 电子行业标准(SJ) 化工行业标准(HG) 国家专业标准(ZB) 轻工行业标准(QB) 铁路运输行业标准(T 船舶行业标准(CB) 国家计量标准(JJ) 商检行业标准(SN) 农业行业标准(NY) 通信行业标准(YD) 石油天然气行业标准 交通行业标准(JT) 石油化工行业标准(S 冶金行业标准(YB) 纺织行业标准(FZ) 有色金属行业标准(Y 煤炭行业标准(MT) 电力行业标准(DL) 公共安全行业标准(G 建筑材料行业标准(J 医药行业标准(YY) 林业行业标准(LY) 建筑工业行业标准(J 城镇建设行业标准(C 烟草行业标准(YC) 水产行业标准(SC) 商业行业标准(SB) 汽车行业标准(QC) 教育行业标准(JY) 水利行业标准(SL) 地质矿产行业标准(D 环境保护行业标准(H 广播电影电视行业标 卫生行业标准(WS) 民用航空行业标准(M 地方标准(DB) 劳动和劳动安全行业 粮食行业标准(LS) 邮政行业标准(YZ) 海洋行业标准(HY) 测绘行业标准(CH) 航天工业行业标准(Q 稀土行业标准(XB) 新闻出版行业标准(C 包装行业标准(BB) 气象行业标准(QX) 档案行业标准(DA) 安全行业标准(AQ) 物资行业标准(WB) 金融行业标准(JR) 航空工业行业标准(H 外经贸行业标准(WM) 文化行业标准(WH) 民政行业标准(MZ) 旅游行业标准(LB) 土地管理行业标准(T 体育行业标准(TY) 其他行业标准 司法鉴定技术规范( 日本标准 美国标准 欧盟标准 德国标准
  • 企业文库 >
    企业文库
    企业宣传 产品文档 技术资料
  • 政务公开 >
    政务公开
    政策文件 便民服务 公示公告
  • 深度学习框架 >
    深度学习框架
  • 区块链 >
    区块链
  • 首页 阶梯文库 > 资源分类 > PDF文档下载
     

    AN1953 USB Type-C简介.pdf

    • 资源ID:3340       资源大小:486.22KB        全文页数:20页
    • 资源格式: PDF        下载权限:游客/注册会员/VIP会员    下载费用:10积分 【人民币1元】
    换一换
    游客快捷下载 游客一键下载
    会员登录下载
    下载资源需要10积分 【人民币1元】

    邮箱/手机:
    温馨提示:
    支付成功后,系统会根据您填写的邮箱或者手机号作为您下次登录的用户名和密码(如填写的是手机,那登陆用户名和密码就是手机号),方便下次登录下载和查询订单;
    特别说明:
    请自助下载,系统不会自动发送文件的哦;
    支付方式: 微信支付    支付宝   
    验证码:   换一换

          加入VIP,下载共享资源
     
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,既可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

    AN1953 USB Type-C简介.pdf

    INTRODUCTION The USB-IF has secured the ubiquitous nature of USB for years to come with the radically updated USB Type-C™ con- nector. While the sleek new reversible form factor has been significant for generating buzz and excitement from the gen- eral consumer market, the significantly expanded feature-set is what will eventually transform the desktop and entertainment environment. The USB Type-C cable is now poised to become the “universal” cable, as it is capable of supplying blazing fast data transfer speeds of up to 10Gb/s, 100W of continuous power flow, and ultra high bandwidth video capabilities made avail- able through Alternate Modes all in parallel with a single connection. This document is intended for those already familiar with USB2.0/USB3.0/USB3.1 who are interested in the high level details of the expanded feature set that the USB Type-C cable brings to USB. SECTIONS Section 1.0, General Information Section 2.0, USB Type-C Cables Section 3.0, CC Pins Section 4.0, VCONN Supply Section 5.0, USB Power Delivery 2.0 Section 6.0, Alternate Modes REFERENCES AN1953 Introduction to USB Type-C™ Author Andrew Rogers Microchip Technology Inc.  2015 Microchip Technology Inc. DS00001953A-page 1 This document is an introduction to USB Type-C™ and is not intended to be a replacement to the official specification. Consult the following specifications for technical details not described in this document. USB Type-C™ Specification USB Power Delivery 2.0 Specification USB 2.0 Specification USB 3.0 Specification USB 3.1 Specification USB Battery Charging BC1.2 AN1953 1.0 GENERAL INFORMATION The USB Type-C™ cable is a reversible 24-pin interconnect created by the USB-IF. The USB Type-C™ specification was first released in August 2014. The USB Type-C cable is a universal cable that addresses the needs for a wide range of computing, display, and charging applications. The long-term objective of the USB Type-C cable is to replace all previous iterations of the USB cable while greatly expanding the overall capabilities. The recent introduction of the USB Power Delivery and Alternate Mode capabilities further expand the raw potential for even greater adoption of the USB standard in a wider range of applications. FIGURE 1 4 3 2 1 USB2.0 Type-A USB2.0 Type-B 5 4 3 2 1 USB2.0 Mini-A 5 4 3 2 1 USB2.0 Mini-B 1 2 4 3 1 2 3 4 5 USB2.0 Micro-A 1 2 3 4 5 USB2.0 Micro-B USB Type-C 4 3 2 1 USB3.0 Type-A USB3.0 Type-B 1 2 4 3 1 2 3 4 5 USB3.0 Micro-B 6 7 8 9 10 B 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 A 11 A 12 5 6 7 8 9 5 6 7 8 9 USB CABLE PLUG FORM FACTORS 1.1 Port Behavior Prior to the introduction of USB Type-C™ and USB Power Delivery, data and power roles were typically fixed. The shape of the receptacle/plug dictated both its data role and power role. USB Type-C connections are much more flexible; ports may be host-mode only, device-mode only, or dual-role and both the data and power roles can be independently and dynamically swapped using USB Power Delivery protocol. Because of this, there is some new terminology that is used to describe USB Type-C systems. Downstream Facing Port DFP - A host or downstream hub port. Typical of a legacy standard Type-A port. Upstream Facing Port UFP - A device or upstream hub port. Typical of a legacy standard Type-B port. Dual-Role Port DRP - A port that transitions between DFP and UFP port states until an attach event occurs. DRPs may be dynamically swapped using USB Power Delivery Protocol Negotiation after an initial attach event. Power Source or Provider - A source of 5V-20V up to 5A. Typical of a legacy standard Type-A port. Power Sink or Consumer - A sink of 5V-20V up to 5A. Typical of a legacy standard Type-B port. 1.2 Features 1.2.1 MINIMUM FEATURE SET A basic USB Type-C application can still be cost-effective.USB Type-C ports are not required to implement all of the advanced features that are defined in the specification. The minimum required feature set includes the following USB2.0 Connection Cable attach and detach detection VCONN active cable supply DS00001953A-page 2  2015 Microchip Technology Inc. AN1953 1.2.2 BATTERY CHARGING While BC1.2 is still supported over USB Type-C because it depends on the USB2.0 lane, a significantly simplified and higher power current capability mechanism is also implemented. This simplified approach involves resistor pull-down/ pull-up relationships. These pull-down/pull-up resistors are connected to the CC wire and the upstream facing port UFP must monitor the voltage on the CC1 and CC2 pins in order to detect the current sourcing capability of the down- stream facing port DFP it is connected to. This is a substantial improvement over the complicated handshake mech- anisms involved with USB BC1.2. The basic USB Type-C current capabilities are Default USB 500mA for USB2.0 and 900mA for USB3.0, 1.5A5V, and 3A5V. For additional details see Section 3.0, CC Pins. 1.2.3 USB2.0, USB3.0, USB3.1, AND BEYOND The USB Type-C cable is designed to support current generation USB2.0 480 Mb/s, USB3.0 5Gb/s, USB3.1 10Gb/ s, and future USB specifications reaching up to 20Gb/s data rates. For additional details see please refer to the individual specifications as published by the USB-IF. 1.2.4 POWER DELIVERY 2.0 USB Power Delivery protocol is a singled-ended, 1-wire protocol created by the USB-IF which specifies the methods for serial communication over the USB Type-C CC wire. USB Power Delivery is required for implementation of the fol- lowing advanced features Communicating with an electronically marked/active cable Elevating the VBUS voltage above 5.5V Increasing current sourcing/sinking above 3A Changing default power roles Provider or Consumer Using Alternate Modes see section 1.2.5 The Power Delivery 2.0 is a port-to-port and port-to-cable communication protocol. The communication can not propa- gate throughout an entire device tree like standard USB protocols. For additional details see Section 5.0, USB Power Delivery 2.0. 1.2.5 ALTERNATE MODES THIRD PARTY PROTOCOLS The USB Type-C cable allows for any third party protocol to be used as long as the cable can support it. Alternate Modes are negotiated and entered on a port-to-port basis using the USB Power Delivery protocol. The following signals may be reassigned when entering an Alternate Mode. TX1/- RX1/- TX2/- RX2/- SBU1/SBU2 Separate specifications define the rules for each Alternate Mode. Currently, specifications exist for DisplayPort authored by VESA and ThunderBolt authored by Intel. For additional details see Section 6.0, Alternate Modes. 1.3 Connector/Receptacle Pins FIGURE 2 GNDSBU2 SBU1 CC2VBUS TX2- TX2 RX2RX2- VBUS D-DCC1 RX1 GND RX1- VBUS GND TX1 TX1- VBUS D- D GND A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 USB TYPE-C RECEPTACLE  2015 Microchip Technology Inc. DS00001953A-page 3 AN1953 FIGURE 3 GNDVCONN CC SBU2VBUS RX1- RX1 TX1TX1- VBUS DD-SBU1 TX2 GND TX2- VBUS GND RX2 RX2- VBUS GND A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 USB TYPE-C PLUG The USB Type-C connector has 24 pins. Because of its reversibility, the pins are arranged in a mirrored configuration. There are a total of 6 differential pairs in a full-featured cable assembly. There are also 4 pins that serve functions new to USB CC1, CC2, SBU1, SBU2. 1.3.1 USB2.0 DIFFERENTIAL PAIRS The 2 sets of USB2.0 differential pairs in the connector pinout only connect to a single differential pair in standard USB2.0 or Full Featured USB Type-C cables. In a typical design, the D and D- pins are simply shorted on the PCB so that a multiplexer or switch is not required. The second set of pins B6/B7 may only be re-purposed in docking type applications where only 1 orientation is possi- ble. 1.3.2 USB3.1 DIFFERENTIAL PAIRS By default, only one set of TX/RX differential pairs are used for USB3.0/USB3.1 communication, depending on cable insertion orientation. Because of the cable reversibility, the USB3.0/USB3.1 lanes must be rerouted upon orientation connection. A typical application may use a 21 multiplexer to achieve this. USB Power Delivery protocol and Alternate Modes allow some or all of the TX/RX differential pairs to be reassigned. 1.3.3 CC1/CC2 PINS The CC1 and CC2 pins are used to connect to the either the CC or VCONN wire in a USB Type-C cable. Both CC1 and CC2 pins must be able to support both CC and VCONN functions. The function is detected upon cable insertion. The CC wire is used to cable orientation detection, USB Type-C current capability advertisement and detection, and USB2.0 BMC communication. See Section 3.0, CC Pins for additional details. The VCONN wire is used to power active or electronically marked cables. See Section 4.0, VCONN Supply for addi- tional details. 1.3.4 SBU1/SBU2 The SBU wires are lower speed signal wires that is allocated for Alternate Mode use only. USB Power Delivery is required for Alternate Mode negotiation before these pins may be used for any purpose. TABLE 1 USB TYPE-C™ RECEPTACLE PINOUT Pin Name Function Note A1 GND Power Support for 60W minimum combined with all VBUS pins A2 TX1 USB3.1 or Alternate Mode 10Gb/s differential pair with TX1- A3 TX1- USB3.1 or Alternate Mode 10Gb/s differential pair with TX1 A4 VBUS Power Support for 60W minimum combined with all VBUS pins A5 CC1 CC or VCONN A6 D USB2.0 A7 D- USB2.0 A8 SBU1 Alternate Mode Lower speed side band signal A9 VBUS Power Support for 60W minimum combined with all VBUS pins A10 RX2- USB3.1 or Alternate Mode 10Gb/s differential pair with RX2 A11 RX2 USB3.1 or Alternate Mode 10Gb/s differential pair with RX2- A12 GND Power Support for 60W minimum combined with all VBUS pins DS00001953A-page 4  2015 Microchip Technology Inc. AN1953 1.4 Power Supply Options The USB Type-C Interconnect introduces two new native charging options, but is also compatible with legacy charging options. USB Power Delivery is also supported but optional. B1 GND Power Support for 60W minimum combined with all VBUS pins B2 TX2 USB3.1 or Alternate Mode 10Gb/s differential pair with TX2- B3 TX2- USB3.1 or Alternate Mode 10Gb/s differential pair with TX2 B4 VBUS Power Support for 60W minimum combined with all VBUS pins B5 CC2 CC or VCONN B6 D USB2.0 B7 D- USB2.0 B8 SBU2 Alternate Mode Lower speed side band signal B9 VBUS Power Support for 60W minimum B10 RX1- USB3.1 or Alternate Mode 10Gb/s differential pair with RX1 B11 RX1 USB3.1 or Alternate Mode 10Gb/s differential pair with RX1- B12 GND Power Support for 60W minimum TABLE 2 USB TYPE-C™ POWER SUPPLY OPTIONS Mode Nominal Voltage Maximum Current USB2.0 5V 500mA USB3.0/USB3.1 5V 900mA USB BC1.2 5V 1.5A USB Type-C Current 1.5A 5V 1.5A USB Type-C Current 2.0A 5V 3.0A USB Power Delivery Up to 20V Up to 5A TABLE 1 USB TYPE-C™ RECEPTACLE PINOUT CONTINUED Pin Name Function Note  2015 Microchip Technology Inc. DS00001953A-page 5 AN1953 2.0 USB TYPE-C CABLES 2.1 Physical Specifications 2.1.1 SIZE The USB Type-C receptacle opening is 8.34mm x 2.56mm. For comparison, the Type-A receptacle opening is 12.50mm x 5.12mm while the USB3.0 micro-AB receptacle opening is 12.25mm x 1.85mm 2.1.2 DURABILITY The USB Type-C cable must minimally support 10,000 mating cycles. 2.1.3 WIRE GAUGE Signal wire gauge is not explicitly specified in the USB Type-C™ specifications, but wires must be appropriately sized for the length and capabilities of the cable such that Signal integrity on the USB2.0 and USB3.0 wires is preserved 50Ω impedance on the CC and SBU1/SBU2 wires Maximum IR drop of 250mV on GND return Maximum IR drop of 500mV on VBUS 2.1.4 CABLE LENGTH Cable lengths are not explicitly specified in the USB Type-C™ specifications. However, the electrical requirements cre- ate some practical limits. USB3.1 Type-C to Type-C cable assemblies are allocated -6 dB loss at 5GHz, effectively lim- iting cable lengths to 1 meter. USB3.0 Type-C to Type-C cable assembly are allocated -7 dB loss at 5GHz, effectively limiting cable lengths to 2 meters. 2.2 USB2.0 A standard USB2.0 Type-C cable assembly is shown in Figure 4 and Table 4. TABLE 3 USB TYPE-C CABLE LENGTH SUMMARY USB Version Cable Length Current Rating USB Electronically Marked USB2.0 ≤ 4 meters 3A Supported Optional 5A Required USB3.0 ≤ 2 meters 3A Supported Optional 5A Required USB3.1 ≤ 1 meter 3A Supported Required 5A DS00001953A-page 6  2015 Microchip Technology Inc. AN1953 FIGURE 4 USB2.0 TYPE-C PLUG GND GND D- D SBU2 CC1 VBUS RX1- TX1- TX1RX1 VBUS Receptacle Cable Plug PCB Cable GND GND D-D SBU1CC2 VBUS RX1- TX1- TX1RX1 VBUS GND GND D CC VBUS VBUS GND GND D- VCONN VBUS VBUS PIN-OUT * Optional wires 2.3 Full Featured A standard full-featured USB Type-C cable assembly is shown in Figure 5 and Table 5. FIGURE 5 GND GND D- D SBU2 CC1 VBUS RX1- TX1- TX1RX1 VBUS Receptacle Cable Plug PCB Cable GND GND D-D SBU1CC2 VBUS RX1- TX1- TX1RX1 VBUS GND GND D CC VBUS VBUS GND GND D- VCONN VBUS VBUS RX1- TX1- TX1RX1 SBU1 RX1- TX1- TX1RX1 SBU2 USB TYPE-C RECEPTACLE AND CABLE PLUG TABLE 4 USB TYPE-C™ USB2.0 CABLE ASSEMBLY WIRING USB Type-C Plug 1 Wire USB Type-C Plug 2 Pin Signal Name Wire Number Signal Name Pin Signal Name A1, B1, A12, B12 GND 1 GND_PWRrt1 [GND_PWRrt2]* A1, B1, A12, B12 GND A4, B4, A9, B9 VBUS 2 PWR_VBUS1 [PWR_VBUS2]* A4, B4, A9, B9 VBUS A5 CC 3 CC A5 CC B5 VCONN [18] [PWR_VCONN]* B5 VCONN A6 DP 4 UTP_Dp A6 DP A7 DM 5 UTP_Dm A7 DM Shell Shield Braid Shield Shell Shield  2015 Microchip Technology Inc. DS00001953A-page 7 AN1953 * Optional wires 2.4 Passive Cables A passive USB Type-C cable does not have embedded powered electronics. All passive cables must minimally support USB2.0, and it can support USB Power Delivery up to 60W of power. 2.5 Powered Cable Electronically Marked An electronically marked cable has embedded electronics that can communicate with the USB ports via USB Power Delivery 2.0 BMC protocol. An electronically marked cable may be powered from the VCONN supply or directly from VBUS and may draw up to 70mW of total power. Use-case Example 1 All USB3.1 compatible USB Type-C cables must be electronically marked. Use-case Example 2 A 100W Power Delivery cable. Any cable capable of exceeding 60W of power carrying capability must be electronically marked and communicate is capabilities to the DFP port. An electronically marked cable will behave identically to a standard passive cable if inserted into a receptacle that does not support USB Power Delivery 2.0. 2.6 Powered Cable Managed Active Cable A managed active cable is an electronically marked cable that also has powered USB data reconditioning circuitry. A managed act

    注意事项

    本文(AN1953 USB Type-C简介.pdf)为本站会员(admin)主动上传,阶梯文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知阶梯文库(发送邮件至77594475@qq.com或直接QQ联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。





    微信图片
    收起
    展开